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ABSTRACT: The Defence Conceptual Modeling Framework (DCMF) is the Swedish Defence Research Agency’s (FOI) 

proposal for conceptual modeling in the military domain. DCMF enables the conceptualization, composition, visualization, 

and reuse of knowledge for modeling and simulation. To achieve these aims, DCMF requires that its final products—

conceptual models expressed as Base Object Models (BOMs)—-are embedded with semantics. In this study, this is 

accomplished by formalizing them through the use of an ontology. These semantically enriched models are better able to 

achieve key requirements of DCMF, mainly conceptualization and reuse of knowledge. Such requirements are crucial when 

conceptual models are stored for later use in a repository.  

1 Introduction 

The Defence Conceptual Modeling Framework (DCMF) 

is a project at the Swedish Defence Research Agency 

(FOI) meant to develop a framework for creating and 

representing conceptual models [2]. Those conceptual 

models are formalized descriptions of real world 

processes, entities, associated relationships, and 

interactions that constitute military missions, operations, 

or tasks. They are the final artifacts of the DCMF process, 

intended as requirements models for simulation 

development. 

To enable a satisfactory analysis of domain knowledge 

and its shared understanding among people and software 

systems, DCMF requires that conceptual models are 

formalized with semantics.  In this paper we discuss one 

such formalization developed by utilizing the Base Object 

Model (BOM). BOM was created by Simulation 

Interoperability Standards Organization (SISO) to enable 

composability and reuse of concepts intended for 

designing High Level Architecture (HLA) simulation 

models, called federations [5]. The IEEE-standard 

Federation Development and Execution Process (FEDEP) 

defines the process for developing and supporting 

federations conforming to HLA [5]. FEDEP proposes six 

basic steps: Define Federation Objectives, Develop 

Federation Conceptual Model, Design Federation, 

Develop Federation, Integrate and Test Federation, and 

Execute Federation and Prepare Results.  

When using BOM to conceptualize the artifacts in 

DCMF, the framework can be seen as a well-defined 

approach for designing Step 2 in FEDEP, i.e., for guiding 

development of conceptual models for federations. 

However, when considering the BOM as a storage model 

in the DCMF process, a need arose to find a way to enrich 

BOM with more semantics than it is capable of carrying 

via its standard representation in XML. This became 

especially important when considering the reuse of the 

DCMF artifacts stored in a repository. While several 

approaches have been offered, among others our earlier 



proposal of BOM++ [6] they have, as the end result, 

extended the BOM specification with new elements, thus 

altering the integrity and structure of the original BOM.  

This paper presents the outcomes of a theoretical 

consideration and implementation of a repository to house 

semantically enhanced, BOM-based concepts. In our 

approach, we have specified BOM using Web Ontology 

Language (OWL) [3] while keeping the BOM 

specification unaltered for three major reasons: a) to 

maintain the integrity of the original BOM, b) to preserve 

the compliance with the methods and concepts that are 

aligned with the original BOM specification, and finally, 

c) to explore in detail the capabilities of BOM expressed 

using OWL, before considering any extensions to the 

specification.  The proposed solution, based on the results 

of the DCMF process, provides a method for not only 

eliciting and creating ontology-based BOMs, but has the 

concomitant benefit of increasing the conceptual model's 

capabilities for use and reuse from the semantic 

perspective.  

The paper is organized as follows: Section 2 gives 

overviews of the basic concepts underlying our work. In 

Section 3, we describe the design of the BOM ontology 

for the repository purpose. In Section 4, we explain the 

usage scenarios of the repository. The final section 

concludes the study and describes further research. 

2 Basic Concepts 

In this section we give an overview of the works related 

to our proposal of an ontology-based conceptual 

repository. 

2.1 DCMF 

The DCMF process is an iterative process spanning four 

major phases governed by different roles of 

responsibilities (see Figure 1). 

 

 

Figure 1: Four Phases of DCMF [10] 

Information is first gathered within the Knowledge 

Acquisition phase. The Producer role processes 

unstructured knowledge and transforms it into represented 

knowledge. To accomplish this, a parsing method must be 

used. DCMF is agnostic where methods are concerned, 

though Subject-Predicate-Object as used in the Resource 

Description Framework (RDF) [3] has been discussed in 

the literature.  Under current review is the DEMO-based 

modeling method proposed by Dietz [10].  

During the Knowledge Representation phase, smaller 

sections of this data are structured as Knowledge 

Instances (KI) and validated for storage in the repository 

by the Controller role. KIs are useful for some purposes, 

but they are not reusable since they are specific to the 

scenario data. To get reusable knowledge, KIs are 

abstracted to the type level, modeled as Knowledge 

Components (KC) and then validated in the third phase, 

called Knowledge Modeling. These components are, upon 

Consumer requests, composed to form Conceptual 

Models (CM) in the fourth and final phase, Knowledge 

Use. All the described artifacts are stored in a repository 

for use and reuse. 

2.2 BOM Overview 

The BOM was created by the SISO to encourage and 

support reuse, interoperability, composability, and to help 

enable rapid development of HLA simulations. Conceived 

in 1997, BOM was standardized by SISO in 2006 [6]. 

2.2.1 What is BOM? 

At a high level, BOMs are reusable packages of 

information representing independent patterns of 

simulation interplay and are intended to be used as 

building blocks in the development and extension of 

simulations. These components can also be composed in 

larger models e.g., BOM Assemblies.  

Additionally, interplay within a simulation or federation 

can be captured and characterized in the form of reusable 

patterns. These are sequences of events between 

simulation elements.  Implementation of these patterns 

using HLA object model constructs is also captured in the 

BOM. [1][5] 

2.2.2 BOM Structure 

Structured in five major parts, a BOM is an XML 

document that encapsulates the information needed to 

describe a simulation component.  

The first part is Model Identification, where metadata 

about the component is stored. This part includes Point of 

Contact (POC) information, as well as general 

information about the component itself (e.g., Type, 



Security Classification, Purpose, Application Domain, 

Use Limitations, and Keywords). These facts describe 

what it simulates, how it can and has been used, as well as 

descriptions aimed towards helping developers find and 

reuse it.  

The second part is the Conceptual Model. The Conceptual 

Model contains information that describes the patterns of 

interplay of the component. This part includes what types 

of actions and events that take place in the component, 

and is described by a pattern description, a state-machine, 

and a listing of conceptual entities and events, which, 

when taken together, describe the flow and dependencies 

of events and their exceptions. 

The third part is Model Mapping, and is where conceptual 

entities and events are mapped to their HLA Object 

Model representations. This part bridges the Conceptual 

Model with the HLA Object Model that is described in 

the fourth part of the BOM.  

 

The fourth part, the Object Model Definition, contains the 

information that is found in a normal Federation Object 

Model (FOM) or Simulation Object Model (SOM)-–

objects, attributes, interactions and parameters—and 

should conform to the HLA Object Model Template 

(OMT).  

The fifth section is called Supporting Tables and consists 

of two parts, namely Notes and Definitions. These contain 

semantic information about events and entities as well as 

actions that is specified in the Conceptual Model, and are 

used to provide a human-readable understanding of the 

patterns described in the BOM. 

Because DCMF’s focus is on developing activity-based 

conceptual models, this paper will focus on the second 

part of the BOM as detailed above. While the other 

sections bear some importance, they are more data-centric 

and not germane to the purposes of this article. 

2.2.3 Conceptual Models in BOM 

BOMs Conceptual Models are further divided into four 

different sub-models: 

• the Pattern of Interplay; 

• the State Machine;  

• the Entity types; and  

• Event types. 

 

 

Figure 2: Structure of BOM Conceptual Models [5]  

Pattern of Interplay 

The Pattern of Interplay (POI) describes the recurring 

behavior used to accomplish a common objective, 

capability, or purpose, as carried out by a real world 

entity, phenomenon, process or system [5]. 

It contains actions, entity types, and event types that take 

part during one interaction between two components. It 

also contains variations and exceptions that could happen 

as alternatives to the normal flow of events. These actions 

form a flow that is sorted by the Sequence Number 

associated to each of them. Along with the Sequence, a 

Name, a Sender, and a Receiver are also specified.  

State Machine 

The State Machine model is a mechanism for modeling 

how entity types move from one state to another via 

actions. State Machines are made of states and conditions 

that must occur to hop to the next state, and are related to 

a specific conceptual entity. 

Entity Types 

Entity types represent real-world objects; they are used in 

POIs in order to define Senders and Receivers. Entity 

types also describe the conceptual entities that are used 

within State Machines, and have Attributes associated 

with them. 

An important part of Entity Types is Model Mapping, 

which describes the mapping between Entity and Event 

elements from BOMs to their counterparts in HLA’s 

Object Model. [7] 

Event Types 

Event types are used by conceptual entities to make 

transitions from one state to another and are employed 

within the POI model.  There are two kinds of Events: 

Triggers and Messages. Triggers are sent by some entities 



without a specific receiver, while Messages do have a 

specific recipient.  

The Sender and Receiver identified for a Pattern Action, 

Variation, or Exception are used to help understand the 

relationship of the POI among the conceptual entities that 

are to be exhibited within a simulation or federation. [7] 

 

 

Figure 3: BOM Pattern Action Relationships [5] 

 

2.2.4 Ontology and OWL 

Ontology refers to an engineering artifact, constituted as a 

specific vocabulary used to describe a certain reality, by 

logical axioms designed to account the intended meaning 

of the vocabulary.  

Their importance has long been recognized in a number 

of research fields and application areas, including 

knowledge engineering and representation, information 

retrieval and extraction, and so forth. In these, ontology 

has been used mainly to facilitate a semantically 

controlled vocabulary of concepts and to enable 

automated reasoning and inferences concerning those 

concepts, their relationships and instances. 

The Web Ontology Language (OWL) was proposed to 

provide a language for ontology design. It is used to 

describe the Classes, Instances (Individuals) and 

Relationships (Properties) between them. OWL facilitates 

greater machine interpretability of content than that 

supported by XML, or RDF, by providing additional 

vocabulary along with a formal semantics. Ontology 

differs from an XML schema in that it is a knowledge 

representation, not a message format.  

The language is built on formalisms that conform to 

Description Logic (DL) forms and therefore allows for 

reasoning and inference. Reasoning is the act of making 

implicit knowledge explicit. For example, an OWL 

knowledge base containing descriptions of students and 

their parents could infer that two students exhibited the 

brother relationship if there were both male and shared 



one or more parent. No explicit markup indicating the 

brotherhood relationship need ever have been declared.  

To perform such tasks, a reasoning engine is required. 

These are computational machinery that use facts found in 

the knowledge base and rules known a priori to determine 

the following: 

1. Class membership: If XYZ is an instance of class 

Restaurant, and Restaurant is a subclass of 

Business, then we can infer that XYZ is an instance 

of Business. 

2. Equivalence of classes: If class A is equivalent to 

class B, and class B is equivalent to class C, then A 

is equivalent to C too. In addition to the transitive-

centric definition of equivalence, in OWL, two 

classes can be considered as equivalent if they 

instantiate exactly the same individuals.  

3. Classification: If we have declared that certain 

property-value pairs for Restaurant class should 

satisfy the condition that Restaurant should be a 

10-letter word for membership of Restaurant 

class, then if an individual BurgerKing satisfies 

such a condition, we can conclude BurgerKing is 

an instance of Restaurant class. 

4. Consistency determines if the model is consistent. 

For example, an OWL model contains these facts:  
            (a) cows are vegetarian  
            (b) sheep are animals  

            (c) a ‘mad cow’ is a cow that has 
          eaten sheep brain 

From these facts a computational reasoning engine 

can infer that mad cows are inconsistent since any 

cow eating sheep violates a.  

5. Subsumption infers knowledge structure, mostly 

hierarchy, or the notion of one artifact being more 

general than another. For example, a model 

incorporating the notions  
            a) drivers drive vehicles 
      b) bus drivers drive buses and  

      c) a bus is a vehicle 

Subsumption reasoning allows the inference that 

bus drivers are drivers (since vehicle is 

more general than bus). 

Tools for Working with OWL 

Protégé is an open source application created by Stanford 

University [4]. It is a Java-based standalone application 

with an extensible architecture. The tool offers 

capabilities for graphically-oriented ontology 

development using the Protégé Editor, as well as other 

services, such as merging, aligning, various types of 

visualization, and exporting/importing, among others [4]. 

In its latest version, Protégé 4, the tool supports designing 

OWL 2 ontologies, as well as a number of Plug-Ins, such 

as Reasoner Manager, the SWRL engine [15], among 

others. 

2.2.5 Previous Research Attempts 

Although BOM has many adherents, many people have 

found its semantic capabilities deficient, specifically that 

the current BOM standard lacks the required semantic 

information to avoid ambiguity [14]. There have been 

several attempts to change this, primarily through altering 

and extending the BOM.  

The approach shown in this work concerns expressing 

BOM as an ontology through the use of OWL. The other 

approaches taken have focused on end goals, such as 

composability, and chose methods accordingly, 

specifically syntactic and semantic, which allowed for the 

most expeditious solution to their task. 

Syntactic Focus  

Several methods for dealing with BOM composition and 

reuse focus solely on procedural, or syntactic, matching. 

One such attempt linked BOM processes to ontologies 

through the use of Simulation Reference Markup 

Language (SRML) [7], while another focused on 

matching BOMs in order to create compositions [8], with 

yet another approach being offered where SRML 

documents were automatically parsed to produce BOMs. 

[13] 

Semantic Focus 

Several approaches have focused on working with BOMs 

on a semantic level.  One such proposal, called Semantic 

BOM Attachment (SBA) used features in OWL to link 

ontologies to BOM [14]. A similar approach was offered 

where BOM was extended, becoming BOM++, through 

reference to an external ontology [6].  

 

In contrast to the current proposal, these previous 

approaches all altered the BOM in some way. The goal of 

the current proposal was to leave the BOM unaltered, 

focusing solely on expressing its features using an 

ontology created using OWL. 



3 Designing DCMF-BOM Repository 

3.1 Requirements for the DCMF-BOM Repository 

The artifacts, which are identified during the DCMF 

process (see Section 2.1), such as Knowledge 

Components (KCs) and Knowledge Instances (KIs), need 

to be stored in a repository. The repository is recognized 

as a central component in DCMF because it is intended to 

store all the artifacts for use and reuse. As was briefly 

reported in the Section 1, the process of identifying KCs 

and KIs and their storage in a repository corresponds to 

Phase 2 in the FEDEP process.  

The major functionalities of the repository concern: 

- Adding data, which encompasses capabilities for 

creating and modifying artifacts, such as KCs and KIs;  

- Searching data, which requires a semantic-level search 

for KCs and KIs to ensure their correct use and reuse, 

in single forms, or in compositions; and 

- Visualizing the artifacts found in the repository. KIs, 

KCs, or whole Conceptual Models need to be 

presented to the user in a comprehensible format, a 

task for which images are particularly well-suited.  

To facilitate the above requirements, we have proposed to 

design the DCMF repository as OWL ontology; we have 

also represented DCMF concepts (i.e. KCs and KIs) as 

BOM elements, i.e. well-established components for 

modeling of simulation requirements.  

Finally, when conceptualizing KCs and KIs with BOM, 

we have taken a process-centric approach rather than the 

more common object-orientation. In this way we have 

established a natural alignment between the business 

requirements cases commonly considered as process-

oriented and the computational model, i.e. the ontology 

structure. Modeling concepts from the process perspective 

facilitates considering them as possible services, when 

needed.  

3.2 BOM as an Ontology 

A BOM is comprised of a group of interrelated elements 

specifying metadata information, conceptual model 

information, class structure information defined using 

HLA OMT constructs, and the mapping between 

conceptual model elements and object model elements 

that identify the class structure information. 

Setting aside the simple addressing and metadata that 

occupy several of these, DCMF and by extension, this 

paper, instead focus solely on the conceptual model. 

Thus, following DCMF's guidelines, the BOM 

specification was translated into an OWL-Full ontology 

using Protégé 4.  

3.2.1 Class-level Mapping in BOM 

Ontologies are based on Is_A relationships, and in OWL, 

the base for these is the concept Thing; all entities must 

possess an Is_A relationship to Thing and every 

individual must belong to at least one class (even if only 

owl:Thing) [3] Therefore, the uppermost level of the 

ontology consists entirely of Thing, and the secondary 

level contains all concepts which can relate directly to 

Thing via an Is_A relationship. 

While at first it might make sense to create a secondary 

level that contains all basic concepts in BOM, which 

would be incorrect, due to the necessity for all secondary 

level items to have a direct, Is_A relationship with 

Thing. For example, a Conceptual Model Definition 

Is_A Thing. Placing its components at a tertiary level is 

not possible, since they do not have complete 

relationships with the secondary level; while a State 

Machine Is_Part_Of a Conceptual Model, it does not 

possess the all-important Is_A relationship. Therefore, all 

components must exist at a level that fully expresses their 

Is_A relationship. When this is done, the following 

structure is created, as seen in Figure 2. 

 

Figure 4: Entire BOM represented as an ontology 



 

Under this basic structure, individuals can be asserted, 

providing they possess an Is_A relationship.  

3.2.2 OWL Properties 

OWL provides several methods for expressing 

information about components, primarily through 

Properties. However, because ontologies are relation-

centric, the commonly accepted definition of 'property' 

does not apply exactly. It is easiest to think of OWL 

properties as representing relationships; of the three types 

of properties, the two most important—Object Properties 

and Data type Properties—are relation-centric. The third 

type, known as Annotation Properties, can be thought of 

simply as data fields. 

 

OWL distinguishes between the two main categories of 

properties that an ontology builder may want to define, 

stating that Object properties link individuals to 

individuals while Data type properties link individuals to 

data values. 

Object Properties 

Object properties link an individual to another individual. 

For example, when expressing one of the precise 

relationships between the Entity NavalCruiser and the 

POI Report-Coordinates, the OWL statement would be 

NavalCruiser isSenderOf Report-Coordinates. 

Object properties can also have many characteristics (e.g., 

Functional) that could provide additional depth to the 

relationships, allowing for greater precision when 

implementing automated reasoning solutions. A 

functional characteristic—where there can be at most one 

individual that is related to the individual via the 

property—for the object property sendsOrder could be 

limited to the Headquarters class.  

Data Properties 

Data type Properties link an individual to an XML 

Schema Data type value or an rdf literal, thus describing 

relationships between an individual and data values. 

These relationships can then be used to enforce class 

membership; we could create data type properties such as 

hasRange or hasBore to restrict membership to the class 

BattleCannon from individuals whose range and bore 

were outside of the set parameters, for example an M-16.  

Annotation Properties 

Annotation properties can be used to add metadata to 

classes, individuals, and object/data type properties. OWL 

Full does not put any constraints on annotations in an 

ontology and has five predefined annotation properties: 

owl:versionInfo 

rdfs:label 

rdfs:comment 

rdfs:seeAlso 
rdfs:isDefinedBy 

To extend these basic forms, Dublin Core properties can 

be used directly as annotation properties, using special 

tags. For example, the class BattleCannon could be linked 

to the data literal(string) Grumman as part of the 

annotation property dc:creator. 

3.2.3 Using OWL Properties with BOM 

While creating the BOM ontology, it was essential to 

review the BOM Template Specification. This defines the 

format and syntax for describing the elements of a 

template for representing BOMs and also specifies the 

semantics of the elements of a BOM and the syntax for 

constructing BOMs from these elements. In addition, it 

provides a data interchange format (DIF) for the 

representation of BOMs using eXtensible Markup 

Language (XML). This BOM DIF should enable tools to 

exchange and reason about BOMs. 

 

However, in reviewing the BOM DIF, it was noted that 

certain outcomes desired by the implementation of the 

BOM DIF could be more effectively carried out if it were 

expressed as an ontology using OWL, rather than as pure 

XML, in particular automated reasoning. For the purposes 

of implementing a repository within DCMF, this last 

capability was crucial. The ability to effectively compose 

and repurpose KCs and KIs depends on the ability for 

semantic discovery to occur, something that is most 

directly accomplished through the use of an OWL 

ontology. 

Using part of the POI as an example, the mapping 

between category and property can be seen in Table 1. 

Each decision was based on the relationships contained 

within the ontology: if a category’s property was 

expressible primarily in terms of a relationship, then it 

was considered an object property and if a property was 

expressible using an XML Data schema type, then it was 

assigned to an OWL Data property. 



Figure 6: Mapping BOM Categories to  

               OWL Properties 

POI Category OWL Property 

POI Data 

Name Data 

Pattern Action Object 

Sequence Object 

Name Data 

Sender Object 

Receiver Object 

Event Object 

BOM Object 

 

4 Utilizing the Repository   

The following scenario has been selected for possible 

submission into the DCMF repository. In the following 

sections we will walk through several possible benefits 

that would accrue from having an OWL ontology.  

A naval defense group, consisting of 

headquarters, a battle cannon and a radar 
station, was deployed to defend against 

incursions by enemy naval forces, 

primarily naval cruisers. 

Recently, the radar station detected an 

enemy naval cruiser and relayed that 

information to headquarters for 
processing. After ascertaining that the 

threat was legitimate, headquarters issued 

orders to the radar station and battle 

cannon to attack the enemy naval cruiser. 

The radar station reassessed the situation 
and plotted the coordinates again, 

relaying location to the battle cannon. 

Simultaneously, the battle cannon 

performed a readiness check, awaiting the 

coordinates from the radar station. When 

the radar station received the coordinates 
from the radar station, a further check 

was performed to gauge distance and 

projectile yield. After this check was 

performed with affirmative results, the 

battle cannon requested final confirmation 
from headquarters and, after receiving it, 

commenced firing, damaging but not 

destroying the enemy naval cruiser. 

During post-incident analysis it was 

learned that the particular battle 

cannon's limited range caused problems 

with targeting. This sub-optimal 
capability was deemed the primary cause 

for the failure to destroy the enemy naval 

cruiser. To increase range, changing the 

battle cannon and radar system from being 

land-based to being ship-based was 
proposed. 

In this study, we do not address the parsing methods and 

their outcomes, as applied in the DCMF knowledge 

process (see Section 2.1.). Parsing is a complex activity, 

and for the sake of this study, we briefly state that first the  

parsed information is mapped to KC terms, such as 

process, entity, relationships; secondly the components 

are added to the taxonomy tree of BOM ontology through 

sub-classing. For instance, the processes elicited in the 

text, such as Locate-Carrier, Manage-Coordinates, or 

Attack-Carrier are parsed first as top-level processes that 

will correspond to BOM-level subclasses. After, the 

protocols (i.e. behavior), the entities and entity 

relationships utilized in those processes are elicited. Once 

the candidate terms are extracted, it is up to the ontology 

designer to add them to the ontology developed from the 

BOM specification, as presented in Section 3. 

4.1 Adding 

Using the text parsing methods outlined in Section 2.1, 

several interesting things could be discovered about the 

scenario.  

1. Classification:  

An unclassified weapon possesses these and only 

these, characteristics: hasRange and hasYield. 

The class Battle-Cannon and Missile-

Warhead both can have these as properties, 

although only Battle-Cannon requires them and 

only them. Therefore, the reasoner could 

conclude that the unclassified weapon was a 

member of the class Battle-Cannon. 

2. Subsumption:  

When given these facts: 

leaders command forces 

commandants command cruisers 
cruisers are a force 

Therefore, commandants must be leaders. 

3. Class membership:  

If Howitzer-M198 is an instance of class 



Battle-Cannon, and Battle-Cannon is a 

subclass of Artillery, then we can infer that 

Howitzer-M198 is an instance of Artillery. 

4.2 SEARCHING 

Once the repository is filled with a number of KCs and 

related KIs, the Consumer will consider possibilities for 

reusing the repository content. In the DCMF context, two 

major usage scenarios are relevant: Searching for KCs 

and KIs of interest, and Searching for possible 

compositions of KCs and KIs to retrieve the conceptual 

models corresponding to complex requirements scenarios. 

 

From the perspective of ontologies, searching for a 

containing concept or a set of them satisfying given 

constraints requires deductive reasoning to provide a 

correct answer. As explained in Section 2.2.4, 

conceptually, OWL can provide a number of reasoning 

capabilities, which can also be performed in Protégé via 

the Reasoner plug-in. However, for more complex 

inferences, the repository user often needs to complement 

OWL with more expressive rules, such as those supported 

by Semantic Web Rule Language (SWRL) [15]. The rules 

in SWRL are written in terms of OWL concepts (i.e. 

classes, properties, individuals and data values) to provide 

more powerful deductive reasoning mechanisms than with 

the core OWL. At its essence, OWL facilitates a number 

of mathematical and string operations that are used to 

evaluate truthfulness of  given, user-defined predicates. 

 

 

Figure 7: Protégé interface, showing inferred 

relationships 

4.2.1 Searching for Knowledge Components and 

Instances 

When searching the repository for a KC or a KI with 

desired features for use in a new requirement scenario, it 

is necessary to be able to search the repository for 

contents that could meet the requirements.  In such a 

scenario, the benefits of implementing BOM in an 

ontology would be apparent, owing to the inherent 

capabilities of an ontology. 

1. Equivalence of classes:  

If class Naval-Cruiser is equivalent to class 

Naval-Frigate, and class Naval-Frigate is 

equivalent to class Naval-Carrier, then Naval-

Cruiser is equivalent to Naval-Carrier too. 

Although on many levels, these instances are 

quite different, the focus of the ontology might 

simply be whether they share the common 

characteristic of floating. This focus or 

ontological commitment is another key benefit of 

ontologies, allowing for very disparate objects to 

find commonalities among their relationships. 

2. Consistency: 

Given the following information a reasoner 

could discover a logic inconsistency: 
        Naval-Cruiser isPartOfDefense-Force 
    Defense-Force defendsCoastline 

    Naval-Cruiser attacksCoastline 

Such a construction could be made logically 

consistent by creating a new property 

isHostileTowards so that the different types of 

Naval-Cruisers (both those hostile and 

friendly) can be captured. 

4.2.2 Searching for Compositions of Components 

and Instances 

A number of requirements scenarios require combining 

two or more KCs or KIs to realize the given requirements 

with a single conceptual model. Here, one may 

distinguish two types of needed compositions: vertical 

and horizontal.  

Vertical Composition 

The vertical composition of KCs and KIs is used when an 

action contained in the component needs to be further 

decomposed. The purpose is to refine the final conceptual 

model to capture more level of details, by following a 

given simulation requirement case.  



A vertical composition can substitute an ActionType 

class, i.e. PatternAction, Variation, or Exception with an 

entire KC class (which is itself a BOM). In the 

requirements scenario in Section 4, Perform-Attack 

pattern action of the interplay Attack-Carrier and the 

corresponding KC are typical examples of the activities 

that may need to be decomposed further to model their 

more detailed tasks and entities, such us e.g., navigation, 

firing, and so forth. Once the rules for examining the 

ability of replacing an ActionType of a KC class with an 

entire KC class are established, they can be further 

checked on the instance level, to see which individuals 

can obey the vertical composition rule.  

To derive the rule for a vertical composition, there must 

be a Knowledge Component X (KCx) with an ActionType 

class such as PatternAction with the sequence number n 

(KCx_PAn) examined for refining by another Knowledge 

Component. As discussed in Section 2.2.3, a pattern 

action is determined by its associated event; the event (of 

message type, for instance) in turn is defined by its 

characteristics, such as Sender, Receiver and Content. 

Thereby, we define the composition requirement as: 

 
Search for the Knowledge Components having an 

Event class equivalent to the Event class of KCx_PAn, 

i.e. where the Sender, Receiver and Content associated 

with both events are equivalent.  

The requirement is examined using a sequence of OWL 

inferences, and complementing SWRL statements: 

1. Running the class equivalence reasoning between the 

Sender and the Receiver classes of the KCx_PAn, 

event, and the events of all other KCs to find possible 

matches. 

2. Running a SWRL statement to examine the 

equivalence of Content data properties of the 

characteristics of the two events selected in 1, i.e. if 

they concern the same entity and if the entity changes 

as specified in the Content fields are the same.  

 

For instance, if the events matched in 1. are 

concerned with reading the location of the carrier, 

where the Sender is Officer and Receiver is Cannon, 

and if in both events it is specified in Content 

Characteristic Location.Destination where 

Location is the Entity and Destination is a Data 

field within it, then those events are considered as 

equivalent.  

After running the above rules, if one or more candidate 

KCs are found, it is further possible to automatically 

check which KIs (i.e. individuals) can fulfill the 

established class-level rule.  

Horizontal Composition 

A horizontal composition of KCs occurs when two or 

more components are chained to model a more complex 

simulation requirement process. Chaining means 

imposing certain flow order between the KCs. For 

instance, from our requirement scenario, the identified 

KCs (i.e., Locate-Carrier, Attack-Carrier, Manage-

Coordinates) should be chained to satisfy the whole 

requirement. The flow order is commonly based upon 

some data or object dependency requirements; in the 

previously given example, Manage-Coordinates must 

precede Attack-Carrier, because the latter requires the 

coordinates of the carrier. 

Assuming that two Knowledge Components, KCx and 

KCy should be examined for chaining in the way that KCy 

follows up KCx, the composition requirement can be 

formulated as: 

 

Find the equivalent entities of KCx and KCy and check 

if the KCx provides the data/objects in those entities 

required by KCy by investigating the content 

characteristics of the events associated with the entities 

in both  KCx and KCy.  

 

In OWL terms, this requires the following steps: 

1. Selecting the entities from KCy and matching them 

against the entities in KCx using the class equivalence 

inferring (by checking if the all containing individuals 

are the same). 

2. Compare the Content Characteristics of the entities 

matched in 1 for equivalence by running a 

corresponding SWRL rule. 

As discussed for the vertical composition, once the 

candidate KCs are determined, automated reasoning can 

be use to find the individuals of those components that 

can be chained. 

4.3 Visualization 

The ability of a framework to utilize current mainstream 

practices is critical to its successful adoption. Particularly 

when working with business users, it is important that 

processes and tools speak a language they are able to 

quickly understand and accept. 

 

Protégé offers several useful visualization tools, among 

them OWL2UML [12]. As shown in Figure 8, classes 



along with their object and data properties are easily rendered into UML diagrams.  

 

 

Figure 8: BOM Ontology, visualized in UML 

 

 

5 Conclusion and Future Work 

The goal of this study has been the design of a repository 

for the concepts from the Defence Conceptual Modeling 

Framework (DCMF) of the Swedish Defence Research 

Agency (FOI), to facilitate use and reuse of the concepts. 

In this task, we have been interested in using the Base 

Object Model (BOM) to shape the conceptualization of 

the DCMF elements. For the effective use of a DCMF 

repository, the most significant features concern storing 

and retrieving of the contained concepts (i.e. Knowledge 

Components and Knowledge Instances) in clear and 

unique ways and with the capabilities to compare those 

concepts, elicit their various relationships and finally, 

correlate them in compositions to model more complex 

requirements for simulations.   

These needs have motivated the consideration of ontology 

expressed through OWL as a tool, because it can facilitate 

the semantic-level classification for stored DCMF data as 

well as reasoning tasks using semantic-level query 

statements. OWL is a widely-used and established 

language, using which we have captured: a) the 

declarative knowledge of DCMF-centered BOM 

components, and; b) classified the components to enable 

an automatic search and composition using automatic 

inferences supported on the OWL level, as well as more 

complex reasoning enabled by SWRL, a rule language 

layered on top of the OWL. We have implemented and 

tested the proposal using Protégé ontology designer and 

several of its plug-ins to support reasoning. 

The benefit of our proposal lies in the use of the original 

BOM standard to facilitate the semantic-level operations 

needed for the DCMF repository, by designing a BOM 

ontology to capture the semantics of the concepts without 

fostering extensions in the BOM notation. As for the 

future research, we plan to consider the OWL and SWRL 

capabilities for further refinements in the exploitation of 

the elements of the entire BOM ontology to obtain richer 

semantic reasoning and inferences.  
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