
Semantic Enhancements when Designing a
BOM-based Conceptual Model Repository

Vahid Mojtahed

FOI, Swedish Defence Research Agency

Division of Command and Control Systems

Department of Decision Support Systems

SE-164 90 Stockholm, Sweden

vahid.mojtahed@foi.se

Eric-Oluf Svee, Jelena Zdravkovic

Department of Computer and Systems Sciences

Stockholm University

FORUM 100, SE- 164 40 Kista, Sweden

eric-sve@dsv.su.se, jelenaz@dsv.su.se

Keywords:

Ontology, BOM, Repository, OWL

ABSTRACT: The Defence Conceptual Modeling Framework (DCMF) is the Swedish Defence Research Agency’s (FOI)

proposal for conceptual modeling in the military domain. DCMF enables the conceptualization, composition, visualization,

and reuse of knowledge for modeling and simulation. To achieve these aims, DCMF requires that its final products—

conceptual models expressed as Base Object Models (BOMs)—-are embedded with semantics. In this study, this is

accomplished by formalizing them through the use of an ontology. These semantically enriched models are better able to

achieve key requirements of DCMF, mainly conceptualization and reuse of knowledge. Such requirements are crucial when

conceptual models are stored for later use in a repository.

1 Introduction

The Defence Conceptual Modeling Framework (DCMF)

is a project at the Swedish Defence Research Agency

(FOI) meant to develop a framework for creating and

representing conceptual models [2]. Those conceptual

models are formalized descriptions of real world

processes, entities, associated relationships, and

interactions that constitute military missions, operations,

or tasks. They are the final artifacts of the DCMF process,

intended as requirements models for simulation

development.

To enable a satisfactory analysis of domain knowledge

and its shared understanding among people and software

systems, DCMF requires that conceptual models are

formalized with semantics. In this paper we discuss one

such formalization developed by utilizing the Base Object

Model (BOM). BOM was created by Simulation

Interoperability Standards Organization (SISO) to enable

composability and reuse of concepts intended for

designing High Level Architecture (HLA) simulation

models, called federations [5]. The IEEE-standard

Federation Development and Execution Process (FEDEP)

defines the process for developing and supporting

federations conforming to HLA [5]. FEDEP proposes six

basic steps: Define Federation Objectives, Develop

Federation Conceptual Model, Design Federation,

Develop Federation, Integrate and Test Federation, and

Execute Federation and Prepare Results.

When using BOM to conceptualize the artifacts in

DCMF, the framework can be seen as a well-defined

approach for designing Step 2 in FEDEP, i.e., for guiding

development of conceptual models for federations.

However, when considering the BOM as a storage model

in the DCMF process, a need arose to find a way to enrich

BOM with more semantics than it is capable of carrying

via its standard representation in XML. This became

especially important when considering the reuse of the

DCMF artifacts stored in a repository. While several

approaches have been offered, among others our earlier

proposal of BOM++ [6] they have, as the end result,

extended the BOM specification with new elements, thus

altering the integrity and structure of the original BOM.

This paper presents the outcomes of a theoretical

consideration and implementation of a repository to house

semantically enhanced, BOM-based concepts. In our

approach, we have specified BOM using Web Ontology

Language (OWL) [3] while keeping the BOM

specification unaltered for three major reasons: a) to

maintain the integrity of the original BOM, b) to preserve

the compliance with the methods and concepts that are

aligned with the original BOM specification, and finally,

c) to explore in detail the capabilities of BOM expressed

using OWL, before considering any extensions to the

specification. The proposed solution, based on the results

of the DCMF process, provides a method for not only

eliciting and creating ontology-based BOMs, but has the

concomitant benefit of increasing the conceptual model's

capabilities for use and reuse from the semantic

perspective.

The paper is organized as follows: Section 2 gives

overviews of the basic concepts underlying our work. In

Section 3, we describe the design of the BOM ontology

for the repository purpose. In Section 4, we explain the

usage scenarios of the repository. The final section

concludes the study and describes further research.

2 Basic Concepts

In this section we give an overview of the works related

to our proposal of an ontology-based conceptual

repository.

2.1 DCMF

The DCMF process is an iterative process spanning four

major phases governed by different roles of

responsibilities (see Figure 1).

Figure 1: Four Phases of DCMF [10]

Information is first gathered within the Knowledge

Acquisition phase. The Producer role processes

unstructured knowledge and transforms it into represented

knowledge. To accomplish this, a parsing method must be

used. DCMF is agnostic where methods are concerned,

though Subject-Predicate-Object as used in the Resource

Description Framework (RDF) [3] has been discussed in

the literature. Under current review is the DEMO-based

modeling method proposed by Dietz [10].

During the Knowledge Representation phase, smaller

sections of this data are structured as Knowledge

Instances (KI) and validated for storage in the repository

by the Controller role. KIs are useful for some purposes,

but they are not reusable since they are specific to the

scenario data. To get reusable knowledge, KIs are

abstracted to the type level, modeled as Knowledge

Components (KC) and then validated in the third phase,

called Knowledge Modeling. These components are, upon

Consumer requests, composed to form Conceptual

Models (CM) in the fourth and final phase, Knowledge

Use. All the described artifacts are stored in a repository

for use and reuse.

2.2 BOM Overview

The BOM was created by the SISO to encourage and

support reuse, interoperability, composability, and to help

enable rapid development of HLA simulations. Conceived

in 1997, BOM was standardized by SISO in 2006 [6].

2.2.1 What is BOM?

At a high level, BOMs are reusable packages of

information representing independent patterns of

simulation interplay and are intended to be used as

building blocks in the development and extension of

simulations. These components can also be composed in

larger models e.g., BOM Assemblies.

Additionally, interplay within a simulation or federation

can be captured and characterized in the form of reusable

patterns. These are sequences of events between

simulation elements. Implementation of these patterns

using HLA object model constructs is also captured in the

BOM. [1][5]

2.2.2 BOM Structure

Structured in five major parts, a BOM is an XML

document that encapsulates the information needed to

describe a simulation component.

The first part is Model Identification, where metadata

about the component is stored. This part includes Point of

Contact (POC) information, as well as general

information about the component itself (e.g., Type,

Security Classification, Purpose, Application Domain,

Use Limitations, and Keywords). These facts describe

what it simulates, how it can and has been used, as well as

descriptions aimed towards helping developers find and

reuse it.

The second part is the Conceptual Model. The Conceptual

Model contains information that describes the patterns of

interplay of the component. This part includes what types

of actions and events that take place in the component,

and is described by a pattern description, a state-machine,

and a listing of conceptual entities and events, which,

when taken together, describe the flow and dependencies

of events and their exceptions.

The third part is Model Mapping, and is where conceptual

entities and events are mapped to their HLA Object

Model representations. This part bridges the Conceptual

Model with the HLA Object Model that is described in

the fourth part of the BOM.

The fourth part, the Object Model Definition, contains the

information that is found in a normal Federation Object

Model (FOM) or Simulation Object Model (SOM)-–

objects, attributes, interactions and parameters—and

should conform to the HLA Object Model Template

(OMT).

The fifth section is called Supporting Tables and consists

of two parts, namely Notes and Definitions. These contain

semantic information about events and entities as well as

actions that is specified in the Conceptual Model, and are

used to provide a human-readable understanding of the

patterns described in the BOM.

Because DCMF’s focus is on developing activity-based

conceptual models, this paper will focus on the second

part of the BOM as detailed above. While the other

sections bear some importance, they are more data-centric

and not germane to the purposes of this article.

2.2.3 Conceptual Models in BOM

BOMs Conceptual Models are further divided into four

different sub-models:

• the Pattern of Interplay;

• the State Machine;

• the Entity types; and

• Event types.

Figure 2: Structure of BOM Conceptual Models [5]

Pattern of Interplay

The Pattern of Interplay (POI) describes the recurring

behavior used to accomplish a common objective,

capability, or purpose, as carried out by a real world

entity, phenomenon, process or system [5].

It contains actions, entity types, and event types that take

part during one interaction between two components. It

also contains variations and exceptions that could happen

as alternatives to the normal flow of events. These actions

form a flow that is sorted by the Sequence Number

associated to each of them. Along with the Sequence, a

Name, a Sender, and a Receiver are also specified.

State Machine

The State Machine model is a mechanism for modeling

how entity types move from one state to another via

actions. State Machines are made of states and conditions

that must occur to hop to the next state, and are related to

a specific conceptual entity.

Entity Types

Entity types represent real-world objects; they are used in

POIs in order to define Senders and Receivers. Entity

types also describe the conceptual entities that are used

within State Machines, and have Attributes associated

with them.

An important part of Entity Types is Model Mapping,

which describes the mapping between Entity and Event

elements from BOMs to their counterparts in HLA’s

Object Model. [7]

Event Types

Event types are used by conceptual entities to make

transitions from one state to another and are employed

within the POI model. There are two kinds of Events:

Triggers and Messages. Triggers are sent by some entities

without a specific receiver, while Messages do have a

specific recipient.

The Sender and Receiver identified for a Pattern Action,

Variation, or Exception are used to help understand the

relationship of the POI among the conceptual entities that

are to be exhibited within a simulation or federation. [7]

Figure 3: BOM Pattern Action Relationships [5]

2.2.4 Ontology and OWL

Ontology refers to an engineering artifact, constituted as a

specific vocabulary used to describe a certain reality, by

logical axioms designed to account the intended meaning

of the vocabulary.

Their importance has long been recognized in a number

of research fields and application areas, including

knowledge engineering and representation, information

retrieval and extraction, and so forth. In these, ontology

has been used mainly to facilitate a semantically

controlled vocabulary of concepts and to enable

automated reasoning and inferences concerning those

concepts, their relationships and instances.

The Web Ontology Language (OWL) was proposed to

provide a language for ontology design. It is used to

describe the Classes, Instances (Individuals) and

Relationships (Properties) between them. OWL facilitates

greater machine interpretability of content than that

supported by XML, or RDF, by providing additional

vocabulary along with a formal semantics. Ontology

differs from an XML schema in that it is a knowledge

representation, not a message format.

The language is built on formalisms that conform to

Description Logic (DL) forms and therefore allows for

reasoning and inference. Reasoning is the act of making

implicit knowledge explicit. For example, an OWL

knowledge base containing descriptions of students and

their parents could infer that two students exhibited the

brother relationship if there were both male and shared

one or more parent. No explicit markup indicating the

brotherhood relationship need ever have been declared.

To perform such tasks, a reasoning engine is required.

These are computational machinery that use facts found in

the knowledge base and rules known a priori to determine

the following:

1. Class membership: If XYZ is an instance of class

Restaurant, and Restaurant is a subclass of

Business, then we can infer that XYZ is an instance

of Business.

2. Equivalence of classes: If class A is equivalent to

class B, and class B is equivalent to class C, then A

is equivalent to C too. In addition to the transitive-

centric definition of equivalence, in OWL, two

classes can be considered as equivalent if they

instantiate exactly the same individuals.

3. Classification: If we have declared that certain

property-value pairs for Restaurant class should

satisfy the condition that Restaurant should be a

10-letter word for membership of Restaurant

class, then if an individual BurgerKing satisfies

such a condition, we can conclude BurgerKing is

an instance of Restaurant class.

4. Consistency determines if the model is consistent.

For example, an OWL model contains these facts:
 (a) cows are vegetarian
 (b) sheep are animals

 (c) a ‘mad cow’ is a cow that has
 eaten sheep brain

From these facts a computational reasoning engine

can infer that mad cows are inconsistent since any

cow eating sheep violates a.

5. Subsumption infers knowledge structure, mostly

hierarchy, or the notion of one artifact being more

general than another. For example, a model

incorporating the notions
 a) drivers drive vehicles
 b) bus drivers drive buses and

 c) a bus is a vehicle

Subsumption reasoning allows the inference that

bus drivers are drivers (since vehicle is

more general than bus).

Tools for Working with OWL

Protégé is an open source application created by Stanford

University [4]. It is a Java-based standalone application

with an extensible architecture. The tool offers

capabilities for graphically-oriented ontology

development using the Protégé Editor, as well as other

services, such as merging, aligning, various types of

visualization, and exporting/importing, among others [4].

In its latest version, Protégé 4, the tool supports designing

OWL 2 ontologies, as well as a number of Plug-Ins, such

as Reasoner Manager, the SWRL engine [15], among

others.

2.2.5 Previous Research Attempts

Although BOM has many adherents, many people have

found its semantic capabilities deficient, specifically that

the current BOM standard lacks the required semantic

information to avoid ambiguity [14]. There have been

several attempts to change this, primarily through altering

and extending the BOM.

The approach shown in this work concerns expressing

BOM as an ontology through the use of OWL. The other

approaches taken have focused on end goals, such as

composability, and chose methods accordingly,

specifically syntactic and semantic, which allowed for the

most expeditious solution to their task.

Syntactic Focus

Several methods for dealing with BOM composition and

reuse focus solely on procedural, or syntactic, matching.

One such attempt linked BOM processes to ontologies

through the use of Simulation Reference Markup

Language (SRML) [7], while another focused on

matching BOMs in order to create compositions [8], with

yet another approach being offered where SRML

documents were automatically parsed to produce BOMs.

[13]

Semantic Focus

Several approaches have focused on working with BOMs

on a semantic level. One such proposal, called Semantic

BOM Attachment (SBA) used features in OWL to link

ontologies to BOM [14]. A similar approach was offered

where BOM was extended, becoming BOM++, through

reference to an external ontology [6].

In contrast to the current proposal, these previous

approaches all altered the BOM in some way. The goal of

the current proposal was to leave the BOM unaltered,

focusing solely on expressing its features using an

ontology created using OWL.

3 Designing DCMF-BOM Repository

3.1 Requirements for the DCMF-BOM Repository

The artifacts, which are identified during the DCMF

process (see Section 2.1), such as Knowledge

Components (KCs) and Knowledge Instances (KIs), need

to be stored in a repository. The repository is recognized

as a central component in DCMF because it is intended to

store all the artifacts for use and reuse. As was briefly

reported in the Section 1, the process of identifying KCs

and KIs and their storage in a repository corresponds to

Phase 2 in the FEDEP process.

The major functionalities of the repository concern:

- Adding data, which encompasses capabilities for

creating and modifying artifacts, such as KCs and KIs;

- Searching data, which requires a semantic-level search

for KCs and KIs to ensure their correct use and reuse,

in single forms, or in compositions; and

- Visualizing the artifacts found in the repository. KIs,

KCs, or whole Conceptual Models need to be

presented to the user in a comprehensible format, a

task for which images are particularly well-suited.

To facilitate the above requirements, we have proposed to

design the DCMF repository as OWL ontology; we have

also represented DCMF concepts (i.e. KCs and KIs) as

BOM elements, i.e. well-established components for

modeling of simulation requirements.

Finally, when conceptualizing KCs and KIs with BOM,

we have taken a process-centric approach rather than the

more common object-orientation. In this way we have

established a natural alignment between the business

requirements cases commonly considered as process-

oriented and the computational model, i.e. the ontology

structure. Modeling concepts from the process perspective

facilitates considering them as possible services, when

needed.

3.2 BOM as an Ontology

A BOM is comprised of a group of interrelated elements

specifying metadata information, conceptual model

information, class structure information defined using

HLA OMT constructs, and the mapping between

conceptual model elements and object model elements

that identify the class structure information.

Setting aside the simple addressing and metadata that

occupy several of these, DCMF and by extension, this

paper, instead focus solely on the conceptual model.

Thus, following DCMF's guidelines, the BOM

specification was translated into an OWL-Full ontology

using Protégé 4.

3.2.1 Class-level Mapping in BOM

Ontologies are based on Is_A relationships, and in OWL,

the base for these is the concept Thing; all entities must

possess an Is_A relationship to Thing and every

individual must belong to at least one class (even if only

owl:Thing) [3] Therefore, the uppermost level of the

ontology consists entirely of Thing, and the secondary

level contains all concepts which can relate directly to

Thing via an Is_A relationship.

While at first it might make sense to create a secondary

level that contains all basic concepts in BOM, which

would be incorrect, due to the necessity for all secondary

level items to have a direct, Is_A relationship with

Thing. For example, a Conceptual Model Definition

Is_A Thing. Placing its components at a tertiary level is

not possible, since they do not have complete

relationships with the secondary level; while a State

Machine Is_Part_Of a Conceptual Model, it does not

possess the all-important Is_A relationship. Therefore, all

components must exist at a level that fully expresses their

Is_A relationship. When this is done, the following

structure is created, as seen in Figure 2.

Figure 4: Entire BOM represented as an ontology

Under this basic structure, individuals can be asserted,

providing they possess an Is_A relationship.

3.2.2 OWL Properties

OWL provides several methods for expressing

information about components, primarily through

Properties. However, because ontologies are relation-

centric, the commonly accepted definition of 'property'

does not apply exactly. It is easiest to think of OWL

properties as representing relationships; of the three types

of properties, the two most important—Object Properties

and Data type Properties—are relation-centric. The third

type, known as Annotation Properties, can be thought of

simply as data fields.

OWL distinguishes between the two main categories of

properties that an ontology builder may want to define,

stating that Object properties link individuals to

individuals while Data type properties link individuals to

data values.

Object Properties

Object properties link an individual to another individual.

For example, when expressing one of the precise

relationships between the Entity NavalCruiser and the

POI Report-Coordinates, the OWL statement would be

NavalCruiser isSenderOf Report-Coordinates.

Object properties can also have many characteristics (e.g.,

Functional) that could provide additional depth to the

relationships, allowing for greater precision when

implementing automated reasoning solutions. A

functional characteristic—where there can be at most one

individual that is related to the individual via the

property—for the object property sendsOrder could be

limited to the Headquarters class.

Data Properties

Data type Properties link an individual to an XML

Schema Data type value or an rdf literal, thus describing

relationships between an individual and data values.

These relationships can then be used to enforce class

membership; we could create data type properties such as

hasRange or hasBore to restrict membership to the class

BattleCannon from individuals whose range and bore

were outside of the set parameters, for example an M-16.

Annotation Properties

Annotation properties can be used to add metadata to

classes, individuals, and object/data type properties. OWL

Full does not put any constraints on annotations in an

ontology and has five predefined annotation properties:

owl:versionInfo

rdfs:label

rdfs:comment

rdfs:seeAlso
rdfs:isDefinedBy

To extend these basic forms, Dublin Core properties can

be used directly as annotation properties, using special

tags. For example, the class BattleCannon could be linked

to the data literal(string) Grumman as part of the

annotation property dc:creator.

3.2.3 Using OWL Properties with BOM

While creating the BOM ontology, it was essential to

review the BOM Template Specification. This defines the

format and syntax for describing the elements of a

template for representing BOMs and also specifies the

semantics of the elements of a BOM and the syntax for

constructing BOMs from these elements. In addition, it

provides a data interchange format (DIF) for the

representation of BOMs using eXtensible Markup

Language (XML). This BOM DIF should enable tools to

exchange and reason about BOMs.

However, in reviewing the BOM DIF, it was noted that

certain outcomes desired by the implementation of the

BOM DIF could be more effectively carried out if it were

expressed as an ontology using OWL, rather than as pure

XML, in particular automated reasoning. For the purposes

of implementing a repository within DCMF, this last

capability was crucial. The ability to effectively compose

and repurpose KCs and KIs depends on the ability for

semantic discovery to occur, something that is most

directly accomplished through the use of an OWL

ontology.

Using part of the POI as an example, the mapping

between category and property can be seen in Table 1.

Each decision was based on the relationships contained

within the ontology: if a category’s property was

expressible primarily in terms of a relationship, then it

was considered an object property and if a property was

expressible using an XML Data schema type, then it was

assigned to an OWL Data property.

Figure 6: Mapping BOM Categories to

 OWL Properties

POI Category OWL Property

POI Data

Name Data

Pattern Action Object

Sequence Object

Name Data

Sender Object

Receiver Object

Event Object

BOM Object

4 Utilizing the Repository

The following scenario has been selected for possible

submission into the DCMF repository. In the following

sections we will walk through several possible benefits

that would accrue from having an OWL ontology.

A naval defense group, consisting of

headquarters, a battle cannon and a radar
station, was deployed to defend against

incursions by enemy naval forces,

primarily naval cruisers.

Recently, the radar station detected an

enemy naval cruiser and relayed that

information to headquarters for
processing. After ascertaining that the

threat was legitimate, headquarters issued

orders to the radar station and battle

cannon to attack the enemy naval cruiser.

The radar station reassessed the situation
and plotted the coordinates again,

relaying location to the battle cannon.

Simultaneously, the battle cannon

performed a readiness check, awaiting the

coordinates from the radar station. When

the radar station received the coordinates
from the radar station, a further check

was performed to gauge distance and

projectile yield. After this check was

performed with affirmative results, the

battle cannon requested final confirmation
from headquarters and, after receiving it,

commenced firing, damaging but not

destroying the enemy naval cruiser.

During post-incident analysis it was

learned that the particular battle

cannon's limited range caused problems

with targeting. This sub-optimal
capability was deemed the primary cause

for the failure to destroy the enemy naval

cruiser. To increase range, changing the

battle cannon and radar system from being

land-based to being ship-based was
proposed.

In this study, we do not address the parsing methods and

their outcomes, as applied in the DCMF knowledge

process (see Section 2.1.). Parsing is a complex activity,

and for the sake of this study, we briefly state that first the

parsed information is mapped to KC terms, such as

process, entity, relationships; secondly the components

are added to the taxonomy tree of BOM ontology through

sub-classing. For instance, the processes elicited in the

text, such as Locate-Carrier, Manage-Coordinates, or

Attack-Carrier are parsed first as top-level processes that

will correspond to BOM-level subclasses. After, the

protocols (i.e. behavior), the entities and entity

relationships utilized in those processes are elicited. Once

the candidate terms are extracted, it is up to the ontology

designer to add them to the ontology developed from the

BOM specification, as presented in Section 3.

4.1 Adding

Using the text parsing methods outlined in Section 2.1,

several interesting things could be discovered about the

scenario.

1. Classification:

An unclassified weapon possesses these and only

these, characteristics: hasRange and hasYield.

The class Battle-Cannon and Missile-

Warhead both can have these as properties,

although only Battle-Cannon requires them and

only them. Therefore, the reasoner could

conclude that the unclassified weapon was a

member of the class Battle-Cannon.

2. Subsumption:

When given these facts:

leaders command forces

commandants command cruisers
cruisers are a force

Therefore, commandants must be leaders.

3. Class membership:

If Howitzer-M198 is an instance of class

Battle-Cannon, and Battle-Cannon is a

subclass of Artillery, then we can infer that

Howitzer-M198 is an instance of Artillery.

4.2 SEARCHING

Once the repository is filled with a number of KCs and

related KIs, the Consumer will consider possibilities for

reusing the repository content. In the DCMF context, two

major usage scenarios are relevant: Searching for KCs

and KIs of interest, and Searching for possible

compositions of KCs and KIs to retrieve the conceptual

models corresponding to complex requirements scenarios.

From the perspective of ontologies, searching for a

containing concept or a set of them satisfying given

constraints requires deductive reasoning to provide a

correct answer. As explained in Section 2.2.4,

conceptually, OWL can provide a number of reasoning

capabilities, which can also be performed in Protégé via

the Reasoner plug-in. However, for more complex

inferences, the repository user often needs to complement

OWL with more expressive rules, such as those supported

by Semantic Web Rule Language (SWRL) [15]. The rules

in SWRL are written in terms of OWL concepts (i.e.

classes, properties, individuals and data values) to provide

more powerful deductive reasoning mechanisms than with

the core OWL. At its essence, OWL facilitates a number

of mathematical and string operations that are used to

evaluate truthfulness of given, user-defined predicates.

Figure 7: Protégé interface, showing inferred

relationships

4.2.1 Searching for Knowledge Components and

Instances

When searching the repository for a KC or a KI with

desired features for use in a new requirement scenario, it

is necessary to be able to search the repository for

contents that could meet the requirements. In such a

scenario, the benefits of implementing BOM in an

ontology would be apparent, owing to the inherent

capabilities of an ontology.

1. Equivalence of classes:

If class Naval-Cruiser is equivalent to class

Naval-Frigate, and class Naval-Frigate is

equivalent to class Naval-Carrier, then Naval-

Cruiser is equivalent to Naval-Carrier too.

Although on many levels, these instances are

quite different, the focus of the ontology might

simply be whether they share the common

characteristic of floating. This focus or

ontological commitment is another key benefit of

ontologies, allowing for very disparate objects to

find commonalities among their relationships.

2. Consistency:

Given the following information a reasoner

could discover a logic inconsistency:
 Naval-Cruiser isPartOfDefense-Force
 Defense-Force defendsCoastline

 Naval-Cruiser attacksCoastline

Such a construction could be made logically

consistent by creating a new property

isHostileTowards so that the different types of

Naval-Cruisers (both those hostile and

friendly) can be captured.

4.2.2 Searching for Compositions of Components

and Instances

A number of requirements scenarios require combining

two or more KCs or KIs to realize the given requirements

with a single conceptual model. Here, one may

distinguish two types of needed compositions: vertical

and horizontal.

Vertical Composition

The vertical composition of KCs and KIs is used when an

action contained in the component needs to be further

decomposed. The purpose is to refine the final conceptual

model to capture more level of details, by following a

given simulation requirement case.

A vertical composition can substitute an ActionType

class, i.e. PatternAction, Variation, or Exception with an

entire KC class (which is itself a BOM). In the

requirements scenario in Section 4, Perform-Attack

pattern action of the interplay Attack-Carrier and the

corresponding KC are typical examples of the activities

that may need to be decomposed further to model their

more detailed tasks and entities, such us e.g., navigation,

firing, and so forth. Once the rules for examining the

ability of replacing an ActionType of a KC class with an

entire KC class are established, they can be further

checked on the instance level, to see which individuals

can obey the vertical composition rule.

To derive the rule for a vertical composition, there must

be a Knowledge Component X (KCx) with an ActionType

class such as PatternAction with the sequence number n

(KCx_PAn) examined for refining by another Knowledge

Component. As discussed in Section 2.2.3, a pattern

action is determined by its associated event; the event (of

message type, for instance) in turn is defined by its

characteristics, such as Sender, Receiver and Content.

Thereby, we define the composition requirement as:

Search for the Knowledge Components having an

Event class equivalent to the Event class of KCx_PAn,

i.e. where the Sender, Receiver and Content associated

with both events are equivalent.

The requirement is examined using a sequence of OWL

inferences, and complementing SWRL statements:

1. Running the class equivalence reasoning between the

Sender and the Receiver classes of the KCx_PAn,

event, and the events of all other KCs to find possible

matches.

2. Running a SWRL statement to examine the

equivalence of Content data properties of the

characteristics of the two events selected in 1, i.e. if

they concern the same entity and if the entity changes

as specified in the Content fields are the same.

For instance, if the events matched in 1. are

concerned with reading the location of the carrier,

where the Sender is Officer and Receiver is Cannon,

and if in both events it is specified in Content

Characteristic Location.Destination where

Location is the Entity and Destination is a Data

field within it, then those events are considered as

equivalent.

After running the above rules, if one or more candidate

KCs are found, it is further possible to automatically

check which KIs (i.e. individuals) can fulfill the

established class-level rule.

Horizontal Composition

A horizontal composition of KCs occurs when two or

more components are chained to model a more complex

simulation requirement process. Chaining means

imposing certain flow order between the KCs. For

instance, from our requirement scenario, the identified

KCs (i.e., Locate-Carrier, Attack-Carrier, Manage-

Coordinates) should be chained to satisfy the whole

requirement. The flow order is commonly based upon

some data or object dependency requirements; in the

previously given example, Manage-Coordinates must

precede Attack-Carrier, because the latter requires the

coordinates of the carrier.

Assuming that two Knowledge Components, KCx and

KCy should be examined for chaining in the way that KCy

follows up KCx, the composition requirement can be

formulated as:

Find the equivalent entities of KCx and KCy and check

if the KCx provides the data/objects in those entities

required by KCy by investigating the content

characteristics of the events associated with the entities

in both KCx and KCy.

In OWL terms, this requires the following steps:

1. Selecting the entities from KCy and matching them

against the entities in KCx using the class equivalence

inferring (by checking if the all containing individuals

are the same).

2. Compare the Content Characteristics of the entities

matched in 1 for equivalence by running a

corresponding SWRL rule.

As discussed for the vertical composition, once the

candidate KCs are determined, automated reasoning can

be use to find the individuals of those components that

can be chained.

4.3 Visualization

The ability of a framework to utilize current mainstream

practices is critical to its successful adoption. Particularly

when working with business users, it is important that

processes and tools speak a language they are able to

quickly understand and accept.

Protégé offers several useful visualization tools, among

them OWL2UML [12]. As shown in Figure 8, classes

along with their object and data properties are easily rendered into UML diagrams.

Figure 8: BOM Ontology, visualized in UML

5 Conclusion and Future Work

The goal of this study has been the design of a repository

for the concepts from the Defence Conceptual Modeling

Framework (DCMF) of the Swedish Defence Research

Agency (FOI), to facilitate use and reuse of the concepts.

In this task, we have been interested in using the Base

Object Model (BOM) to shape the conceptualization of

the DCMF elements. For the effective use of a DCMF

repository, the most significant features concern storing

and retrieving of the contained concepts (i.e. Knowledge

Components and Knowledge Instances) in clear and

unique ways and with the capabilities to compare those

concepts, elicit their various relationships and finally,

correlate them in compositions to model more complex

requirements for simulations.

These needs have motivated the consideration of ontology

expressed through OWL as a tool, because it can facilitate

the semantic-level classification for stored DCMF data as

well as reasoning tasks using semantic-level query

statements. OWL is a widely-used and established

language, using which we have captured: a) the

declarative knowledge of DCMF-centered BOM

components, and; b) classified the components to enable

an automatic search and composition using automatic

inferences supported on the OWL level, as well as more

complex reasoning enabled by SWRL, a rule language

layered on top of the OWL. We have implemented and

tested the proposal using Protégé ontology designer and

several of its plug-ins to support reasoning.

The benefit of our proposal lies in the use of the original

BOM standard to facilitate the semantic-level operations

needed for the DCMF repository, by designing a BOM

ontology to capture the semantics of the concepts without

fostering extensions in the BOM notation. As for the

future research, we plan to consider the OWL and SWRL

capabilities for further refinements in the exploitation of

the elements of the entire BOM ontology to obtain richer

semantic reasoning and inferences.

6 References
[1] Simventions: “Homepage of Base Object

Model” Available online at

http://www.boms.info Last accessed 2010-03-11

[2] V. Mojtahed, M. Garcia-Lozano, P. Svan, B.

Andersson: “DCMF – Defence Conceptual

Modeling Framework. Methodology Report”

FOI-R--1754—SE, ISSN 1650-1942, 2005.

[3] World Wide Web Consortium (W3C): “OWL

Web Ontology Language Overview” W3C

recommendation 10th February 2004. Available

online at http://www.w3.org/TR/owl-features/

Last accessed 2010-04-20.

[4] Protégé Ontology Editor: Open source tool

hosted by Stanford University. Available online

at http://protege.stanford.edu/ Last accessed

2010-03-20

[5] Simulation Interoperability Standards

Organization (SISO): “Guide for Base Object

Model (BOM) Use and Implementation” SISO-

STD-003.1-2006, 2006.

[6] V. Mojtahed, B. Andersson, V. Kabilan, J.

Zdravkovic: “BOM++, a semantically enriched

BOM” Spring Simulation Interoperability

Workshop, 2008.

[7] F. Moradi, P. Nordvaller, R. Ayani: “Simulation

Model Composition using BOMs” Tenth IEEE

International Symposium on Distributed

Simulation and Real-Time Applications

(DS-RT '06), 2006.

[8] I. Mahmood, R. Ayani, V.Vlassov, F. Moradi:

“Statemachine Matching in BOM based model

Composition” 13
th

 IEEE/ACM International

Symposium on Distributed Simulation and Real

Time Applications, 2009.

[9] M. Garcia-Lozano, V. Mojtahed, P. Svan, B.

Andersson,V. Kabilan: “Konceptuell

Modellering inom det Svenska Försvart-DCMF”

Swedish Defence Research Agency, FOI-R--

2115—SE, ISSN 1650-1942, 2008.

[10] V. Mojtahed, E. Tjörnhammar, J. Zdravkovic,

A. Khan: “The Knowledge Use in DCMF,

Repository, Processes and Products” FOI-R—

2606—SE, ISSN 1650-1942, 2008.

[11] J. Dietz: “Enterprise Ontology, Theory and

Methodology” Springer–Verlag,

Berlin/Heidelberg, Germany, ISBN 978-3-540-

29169-5, 2006.

[12] OWL2UML Plugin, Available online at

http://apps.lumii.lv/owl2uml/ Accessed 23

March 2010.

[13] F. Moradi, R. Ayani, S. Mokarizadeh, G.

Shahmirzadi, G. Tan: “A Rule-based Approach

to Syntactic and Semantic Composition of

BOMs” 11
th

 IEEE Symposium on Distributed

Simulation and Real-time Applications, 2007.

[14] F. Moradi, R. Ayani, S. Mokarizadeh, G. Tan:

“A rule-based semantic matching of base object

models” Int. J. Simulation and Process

Modelling, Vol. 5, No. 2, pp.132–145, 2009.

[15] World Wide Web Consortium (W3C): “SWRL:

A Semantic Web Rule Language Combining

OWL and RuleML” W3C Member Submission

21 May 2004. Available online at

http://www.w3.org/Submission/SWRL/. Last

accessed 2010-04-15.

Author Biographies

VAHID MOJTAHED is a senior scientist and deputy

research director at the Swedish Defence Research

Agency (FOI). He received a Master of Science in

Computer Science and Engineering from Chalmers

University of Technology in 1994. He has been working

on modeling and simulation for the past 16 years and has

led the Swedish Conceptual Modeling research at FOI

since 2001 as well as the FOI research on Semantic

Interoperability since 2006. He is also the Swedish

representative in NATO's research group on Conceptual

Modeling as well as project manager for the Swedish

Conceptual Modeling project, DCMF. His research

interests are in the area of Conceptual Modeling,

Simulation Framework, Knowledge Representation,

Semantic Interoperability and Information Operations and

Warfare.

ERIC-OLUF SVEE is a research engineer, employed by

Stockholm University and contracted to the Swedish

Defence Research Agency (FOI). He received his Master

of Science in Interactive Systems Engineering from the

Royal Institute of Technology (KTH) in 2008. Prior to

returning to academia, Eric-Oluf’s work focused on the

information management and design, as well as accessible

design. His most recent position was with the Swedish

Institute of Computer Science (SICS) where his research

was focused on delivering personalized services to mobile

devices in a privacy sensitive manner.

JELENA ZDRAVKOVIC has a doctorate in the field of

process modeling and integration, and her current

research continues to focus on business and process

integration with e-services. In addition, Jelena holds a

Masters in Business Administration, with a concentration

on e-business. In recent years, Jelena has participated in

several national and European research projects. She is a

PC member/co-organizer of several international

conferences and workshops. Besides academic

qualifications, Jelena has experience as a consultant in

systems modeling. Jelena now works as senior lecturer

and researcher at the Department of Computer and

Systems Sciences (DSV), Stockholm University/KTH in

Sweden.

